#include "gpusolver.h" #include #include "time.h" #define GLOBAL_SIZE (256) #define LOCAL_SIZE (GLOBAL_SIZE) #define CHECKASGN (true) #define DEBUG i32 gpusolve(cnf* c) { cl_platform_id platformid = NULL; cl_device_id deviceid = NULL; cl_uint numdevices; cl_uint numplatforms; FILE *fp; char *source_str; size_t source_size; fp = fopen("../psat.cl", "r"); if (!fp) { fprintf(stderr, "Failed to load kernel.\n"); exit(1); } source_str = (char*)malloc(0x100000); source_size = fread( source_str, 1, 0x100000, fp); fclose( fp ); u32 wordcnt = 1 + ((c->varcnt) >> 5U); u32* solution = calloc((wordcnt + 1), sizeof(u32)); if (solution == NULL) { printf("Failed to allocate solution buffer\n"); exit(1); } cl_int res = clGetPlatformIDs(1, &platformid, &numplatforms); if (res != CL_SUCCESS) { printf("Failed to retrieve OpenCL platform IDs\n"); exit(1); } // printf("Found %u platforms\n", numplatforms); res = clGetDeviceIDs(platformid, CL_DEVICE_TYPE_GPU, 1, &deviceid, &numdevices); if (res != CL_SUCCESS) { printf("Failed to retrieve OpenCL device IDs\n"); exit(1); } // printf("Found %u devices\n", numdevices); cl_context context = clCreateContext(NULL, 1, &deviceid, NULL, NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create OpenCL context\n"); exit(1); } cl_command_queue commqueue = clCreateCommandQueueWithProperties(context, deviceid, 0, &res); if (res != CL_SUCCESS) { printf("Failed to create OpenCL command queue\n"); exit(1); } // Device memory buffers: /* For the CNF: * {clausecnt, literalcnt, varcnt) * variable array * clause array * parity array * * Other: * Status * A single counter */ // TODO: Look into DMA, maybe? Could do clause learning CPU-side and just update the GPU buffer cl_mem gpuheader = clCreateBuffer(context, CL_MEM_READ_ONLY, 3 * sizeof(cl_uint), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create CNF header buffer\n"); exit(1); } cl_mem gpulvars = clCreateBuffer(context, CL_MEM_READ_ONLY, c->clausecnt * sizeof(cl_uint), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create CNF lvar buffer\n"); exit(1); } cl_mem gpuvariables = clCreateBuffer(context, CL_MEM_READ_ONLY, c->litcnt * sizeof(cl_uint), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create CNF variable buffer\n"); exit(1); } cl_mem gpuclauses = clCreateBuffer(context, CL_MEM_READ_ONLY, c->litcnt * sizeof(cl_uint), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create CNF clause buffer\n"); exit(1); } cl_mem gpuparities = clCreateBuffer(context, CL_MEM_READ_ONLY, c->litcnt * sizeof(cl_uchar), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create CNF parity buffer\n"); exit(1); } // Allocate scratchpad memory cl_mem gpuscratchpad = clCreateBuffer(context, CL_MEM_READ_WRITE, c->clausecnt * sizeof(cl_uchar), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create CNF subsumption scratchpad buffer\n"); exit(1); } /* cl_mem gpumaxvals = clCreateBuffer(context, CL_MEM_READ_WRITE, GLOBAL_SIZE * sizeof(cl_uint), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create CNF maxval buffer\n"); exit(1); } */ cl_mem gpuoutput = clCreateBuffer(context, CL_MEM_READ_WRITE, (wordcnt + 1) * sizeof(cl_uint), NULL, &res); if (res != CL_SUCCESS) { printf("Failed to create output buffer\n"); exit(1); } u32 cnfheader[3] = { c->litcnt, c->varcnt, c->clausecnt }; // Load buffers to GPU res = clEnqueueWriteBuffer(commqueue, gpuheader, CL_TRUE, 0, 3 * sizeof(cl_uint), cnfheader, 0, NULL, NULL); if (res != CL_SUCCESS) { printf("Failed to queue CNF header write\n"); exit(1); } res = clEnqueueWriteBuffer(commqueue, gpulvars, CL_TRUE, 0, c->clausecnt * sizeof(cl_uint), c->lastvars, 0, NULL, NULL); if (res != CL_SUCCESS) { printf("Failed to queue CNF lvar write\n"); exit(1); } res = clEnqueueWriteBuffer(commqueue, gpuvariables, CL_TRUE, 0, c->litcnt * sizeof(cl_uint), c->variables, 0, NULL, NULL); if (res != CL_SUCCESS) { printf("Failed to queue CNF variable write\n"); exit(1); } res = clEnqueueWriteBuffer(commqueue, gpuclauses, CL_TRUE, 0, c->litcnt * sizeof(cl_uint), c->clauses, 0, NULL, NULL); if (res != CL_SUCCESS) { printf("Failed to queue CNF clause write\n"); exit(1); } res = clEnqueueWriteBuffer(commqueue, gpuparities, CL_TRUE, 0, c->litcnt * sizeof(cl_uchar), c->pars, 0, NULL, NULL); if (res != CL_SUCCESS) { printf("Failed to queue CNF parity write\n"); exit(1); } cl_program satprog = clCreateProgramWithSource(context, 1, (const char**) &source_str, (const size_t*) &source_size, &res); if (res != CL_SUCCESS) { printf("Failed to create OpenCL program\n"); exit(1); } res = clBuildProgram(satprog, 1, &deviceid, NULL, NULL, NULL); if (res != CL_SUCCESS) { char* logbuf = malloc(sizeof(char) * 65536); size_t loglen = 0; res = clGetProgramBuildInfo(satprog, deviceid, CL_PROGRAM_BUILD_LOG, sizeof(char) * 65536, logbuf, &loglen); if (res != CL_SUCCESS) { printf("Failed to retrieve build logs\n"); exit(1); } printf("Build failed\n"); printf("%s\n", logbuf); free(logbuf); exit(1); } cl_kernel kernel = clCreateKernel(satprog, "vectorSAT", &res); if (res != CL_SUCCESS) { printf("Failed to create kernel\n"); exit(1); } res = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*) &gpuheader); res = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*) &gpulvars); res = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*) &gpuvariables); res = clSetKernelArg(kernel, 3, sizeof(cl_mem), (void*) &gpuclauses); res = clSetKernelArg(kernel, 4, sizeof(cl_mem), (void*) &gpuparities); res = clSetKernelArg(kernel, 5, sizeof(cl_mem), (void*) &gpuoutput); res = clSetKernelArg(kernel, 6, sizeof(cl_mem), (void*) &gpuscratchpad); res = clSetKernelArg(kernel, 7, LOCAL_SIZE * sizeof(cl_uint), NULL); // u64 starttime = utime(); size_t itemsize[2] = {GLOBAL_SIZE, LOCAL_SIZE }; res = clEnqueueNDRangeKernel(commqueue, kernel, 1, NULL, itemsize, itemsize + 1, 0, NULL, NULL); if (res != CL_SUCCESS) { printf("Failed to queue kernel for execution\n"); exit(res); } res = clEnqueueReadBuffer(commqueue, gpuoutput, CL_TRUE, 0, (wordcnt + 1) * sizeof(cl_uint), solution, 0, NULL, NULL); if (res != CL_SUCCESS) { printf("Failed to read kernel output\n"); exit(1); } // u64 endtime = utime(); if (solution[0] == 1) { printf("UNSAT\n"); } else if (solution[0] == 0) { printf("SAT\n"); for (u32 k = 0; k < c->varcnt; ++k) { u32 vind = (c->varcnt - 1) - k; u32 iind = vind >> 5U; u32 bind = vind & 0b11111U; u8 par = (solution[iind + 1] >> bind) & 1U; printf("%u", par); } printf("\n"); if (CHECKASGN) { u8* assigncheck = calloc(c->clausecnt, sizeof(u8)); for (u32 i = 0; i < c->litcnt; ++i) { u32 g = ((c->varcnt - 1) - c->variables[i]) >> 5U; u32 h = ((c->varcnt - 1) - c->variables[i]) & 0b11111U; u8 paract = (solution[g + 1] >> h) & 1U; if (c->pars[i] == paract) assigncheck[c->clauses[i]] = true; } for (u32 i = 0; i < c->clausecnt; ++i) { if (!assigncheck[i]) { printf("Failed assignment check\n"); solution[0] = 4; } } free(assigncheck); printf("Passed assignment check\n"); } } else { printf("What the fuck???\n"); solution[0] = 3; } // printf("Actual time: %f seconds\n", ((f64) (endtime - starttime)) / 1000000.0); res = clFlush(commqueue); res = clFinish(commqueue); res = clReleaseKernel(kernel); res = clReleaseProgram(satprog); res = clReleaseCommandQueue(commqueue); res = clReleaseContext(context); res = clReleaseMemObject(gpuheader); res = clReleaseMemObject(gpulvars); res = clReleaseMemObject(gpuvariables); res = clReleaseMemObject(gpuclauses); res = clReleaseMemObject(gpuparities); res = clReleaseMemObject(gpuoutput); res = clReleaseMemObject(gpuscratchpad); res = clReleaseDevice(deviceid); i32 retval = solution[0]; free(solution); free(source_str); return retval; }