327 lines
11 KiB
C
327 lines
11 KiB
C
#include "cnf.h"
|
|
|
|
cnf* readDIMACS(char* path) {
|
|
cnf* c = malloc(sizeof(cnf));
|
|
CHECK(c, "Failed to alloc CNF struct\n");
|
|
|
|
FILE* f = fopen(path, "r");
|
|
CHECK(f, "Failed to open file\n");
|
|
|
|
u32 bufsize = 1000;
|
|
char* buf = malloc(sizeof(char) * bufsize);
|
|
CHECK(buf, "Failed to alloc read buffer\n");
|
|
|
|
CHECK(fgets(buf, sizeof(char) * bufsize, f), "Failed to read file\n");
|
|
|
|
// 'c' marks the beginning of a comment line in DIMACs. Skip this line
|
|
while (buf[0] == 'c') {
|
|
CHECK(fgets(buf, sizeof(char) * bufsize, f), "Failed to read file\n");
|
|
}
|
|
|
|
// The first non-comment line is the header, should have format 'p cnf [varcnt] [clausecnt]
|
|
// We skip the first bit by iterating and skipping any character that's p, c, n, f, or space
|
|
char* temp = buf;
|
|
while (*temp == ' ' || *temp == 'p' || *temp == 'c' || *temp == 'n' || *temp == 'f') {
|
|
temp++;
|
|
}
|
|
|
|
// Char by char we read in the number of variables
|
|
c->varcnt = 0;
|
|
while (((u8) (*temp - '0')) < 10) {
|
|
c->varcnt *= 10;
|
|
c->varcnt += (*temp - '0');
|
|
temp++;
|
|
}
|
|
|
|
// Skip any trailing whitespace
|
|
while (*temp == ' ') temp++;
|
|
|
|
// Read in clausecnt
|
|
c->clausecnt = 0;
|
|
while (((u8) (*temp - '0')) < 10) {
|
|
c->clausecnt *= 10;
|
|
c->clausecnt += (*temp - '0');
|
|
temp++;
|
|
}
|
|
|
|
// Resize line buffer: the maximum clause size is varcnt, the maximum size of a u32 in decimal
|
|
// is 10, and conservatively given 2 extra characters for the - symbol and space delimiting,
|
|
// resizing the buffer to this should mean we never encounter a clause we fail to read.
|
|
u32 nsize = sizeof(char) * (c->varcnt * 12LU) + 10;
|
|
char* nbuf = realloc(buf, nsize);
|
|
CHECK(nbuf, "Failed to realloc read buffer\n");
|
|
|
|
buf = nbuf;
|
|
|
|
u32 cnt = 0;
|
|
u32 cap = 32;
|
|
|
|
// We store separate arrays: literal i of the CNF has a parity at index i in one array
|
|
// the variable it corresponds to at the same index in another
|
|
// And the clause it's a member of in a third
|
|
c->variables = calloc( cap, sizeof(u32));
|
|
CHECK(c->variables, "Failed to allocate literal variables\n");
|
|
c->clauses = calloc( cap, sizeof(u32));
|
|
CHECK(c->clauses, "Failed to allocate literal clauses\n");
|
|
c->pars = calloc( cap, sizeof(u8));
|
|
CHECK(c->pars, "Failed to allocate literal parities\n");
|
|
c->lastvars = calloc( c->clausecnt, sizeof(u32));
|
|
CHECK(c->lastvars, "Failed to allocate clause lastvars\n");
|
|
|
|
|
|
for (u32 i = 0; i < c->clausecnt; ++i) {
|
|
CHECK(fgets(buf, nsize, f), "Failed to read clause\n");
|
|
|
|
temp = buf;
|
|
while (*temp == ' ') temp++;
|
|
|
|
// Iterate through char by char
|
|
bool empty = true;
|
|
bool tr = true;
|
|
while (*temp != '\n') {
|
|
if (cnt == cap) {
|
|
// Out of space to add more literals, realloc arrays
|
|
u32 ncap = cap << 1U;
|
|
c->variables = realloc(c->variables, sizeof(u32) * ncap);
|
|
memset(c->variables + cap, 0, sizeof(u32) * cap);
|
|
CHECK(c->variables, "Failed to realloc variable array\n");
|
|
c->clauses = realloc(c->clauses, sizeof(u32) * ncap);
|
|
memset(c->clauses + cap, 0, sizeof(u32) * cap);
|
|
CHECK(c->clauses, "Failed to realloc clause array\n");
|
|
c->pars = realloc(c->pars, sizeof(u8) * ncap);
|
|
memset(c->pars + cap, 0, sizeof(u8) * cap);
|
|
CHECK(c->pars, "Failed to realloc parity array\n");
|
|
cap = ncap;
|
|
}
|
|
|
|
if (*temp == '-') {
|
|
// Mark that the literal currently being read is negated
|
|
tr = false;
|
|
} else if (((u8) (*temp - '0')) < 10) {
|
|
// Read in the literal's digits
|
|
c->variables[cnt] *= 10;
|
|
c->variables[cnt] += (*temp - '0');
|
|
} else {
|
|
// Skip any whitespace and pack the read value into the arrays, along with
|
|
// any additional data
|
|
while (temp[1] == ' ') temp++;
|
|
c->pars[cnt] = tr;
|
|
c->clauses[cnt] = i;
|
|
c->variables[cnt] -= 1;
|
|
if (c->lastvars[i] < c->variables[cnt]) c->lastvars[i] = c->variables[cnt];
|
|
empty = false;
|
|
tr = true;
|
|
cnt++;
|
|
if (temp[1] == '0') {
|
|
break;
|
|
}
|
|
}
|
|
temp++;
|
|
}
|
|
|
|
if (empty) {
|
|
printf("UNSAT: Empty clause %u\n", i);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// Lastvars is set to the index of the last variable of each clause. However, because in the
|
|
// counter, the last variable has the lsb position, we flip the value of lastvars
|
|
for (u32 i = 0; i < c->clausecnt; ++i) {
|
|
c->lastvars[i] += 1U;
|
|
c->lastvars[i] = c->varcnt - c->lastvars[i];
|
|
}
|
|
|
|
c->litcnt = cnt;
|
|
|
|
// Realloc the arrays to exactly match the number of literals
|
|
c->variables = realloc(c->variables, sizeof(u32) * c->litcnt);
|
|
c->clauses = realloc(c->clauses, sizeof(u32) * c->litcnt);
|
|
c->pars = realloc(c->pars, sizeof(u8) * c->litcnt);
|
|
free(buf);
|
|
if (fclose(f)) {
|
|
printf("Failed to close file\n");
|
|
return NULL;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
void printcnf(cnf* c) {
|
|
printf("p cnf %u %u\n", c->varcnt, c->clausecnt);
|
|
u32 pclause = 0;
|
|
for (u32 i = 0; i < c->litcnt; ++i) {
|
|
if (c->clauses[i] != pclause) printf("0\n");
|
|
if (c->pars[i] == 0) printf("-");
|
|
printf("%u ", c->variables[i] + 1);
|
|
pclause = c->clauses[i];
|
|
}
|
|
printf("0\n");
|
|
}
|
|
|
|
void freecnf(cnf* c) {
|
|
free(c->pars);
|
|
free(c->clauses);
|
|
free(c->variables);
|
|
free(c->lastvars);
|
|
free(c);
|
|
}
|
|
|
|
const u64 RBITS = 8;
|
|
const u64 RSIZE = 1LU << RBITS;
|
|
const u64 RLVLS = (63LU / RBITS) + 1;
|
|
const u64 RMASK = RSIZE - 1;
|
|
|
|
void sortlastnum(cnf* c, u64 N) {
|
|
// Radix sort on the literals themselves based on their clause's
|
|
bool v = false;
|
|
u32* d = malloc(sizeof(u32) * c->litcnt);
|
|
u32* d2 = malloc(sizeof(u32) * c->litcnt);
|
|
u8* d3 = malloc(sizeof(u8) * c->litcnt);
|
|
|
|
u64 qb[RLVLS * RSIZE];
|
|
u64 qe[RLVLS * RSIZE];
|
|
memset(qb, 0, sizeof(u64) * RLVLS * RSIZE);
|
|
memset(qe, 0, sizeof(u64) * RLVLS * RSIZE);
|
|
|
|
for (u64 pass = 0; pass < RLVLS; ++pass) {
|
|
u64 shift = pass * RBITS;
|
|
|
|
for (u64 i = 0; i < N; ++i) {
|
|
// U32MAX - because we want to sort highest to lowest, not lowest to highest
|
|
u32 val = UINT32_MAX - c->lastvars[c->clauses[i]];
|
|
u64 ind = (val >> shift) & RMASK;
|
|
qe[pass * RSIZE + ind]++;
|
|
}
|
|
|
|
u64 uc = 0;
|
|
for (u64 i = 0; i < RSIZE; ++i) if (qe[pass * RSIZE + i]) uc++;
|
|
if (uc == 1) continue;
|
|
|
|
qb[pass * RSIZE] = 0;
|
|
for (u64 i = 1; i < RSIZE; ++i) {
|
|
qb[pass * RSIZE + i] = qb[pass * RSIZE + i - 1] + qe[pass * RSIZE + i - 1];
|
|
}
|
|
|
|
for (u64 i = 0; i < N; ++i) {
|
|
u32 val = UINT32_MAX - c->lastvars[c->clauses[i]];
|
|
u64 ind = (val >> shift) & RMASK;
|
|
d[qb[pass * RSIZE + ind]] = c->variables[i];
|
|
d2[qb[pass * RSIZE + ind]] = c->clauses[i];
|
|
d3[qb[pass * RSIZE + ind]] = c->pars[i];
|
|
qb[pass * RSIZE + ind]++;
|
|
__builtin_prefetch(d + qb[pass * RSIZE + ind] + 1);
|
|
__builtin_prefetch(d2 + qb[pass * RSIZE + ind] + 1);
|
|
__builtin_prefetch(d3 + qb[pass * RSIZE + ind] + 1);
|
|
}
|
|
|
|
// Every iteration we swap pointers to avoid doing a memcpy
|
|
u32* tptr = c->variables;
|
|
c->variables = d;
|
|
d = tptr;
|
|
tptr = c->clauses;
|
|
c->clauses = d2;
|
|
d2 = tptr;
|
|
u8* tptr2 = c->pars;
|
|
c->pars = d3;
|
|
d3 = tptr2;
|
|
v = !v;
|
|
}
|
|
|
|
// If the pointers are still swapped at the end, we swap them to their original locations and
|
|
// copy over the result
|
|
if (v) {
|
|
u32* tptr = c->variables;
|
|
c->variables = d;
|
|
d = tptr;
|
|
tptr = c->clauses;
|
|
c->clauses = d2;
|
|
d2 = tptr;
|
|
u8* tptr2 = c->pars;
|
|
c->pars = d3;
|
|
d3 = tptr2;
|
|
memcpy(c->variables, d, N * sizeof(u32));
|
|
memcpy(c->clauses, d2, N * sizeof(u32));
|
|
memcpy(c->pars, d3, N * sizeof(u8));
|
|
}
|
|
free(d);
|
|
free(d2);
|
|
free(d3);
|
|
|
|
// Initialize an array with all the clause indices in their current order
|
|
u32* swaparr = malloc(sizeof(u32) * c->clausecnt);
|
|
for (u32 i = 0; i < c->clausecnt; ++i) {
|
|
swaparr[i] = i;
|
|
}
|
|
|
|
// Perform another radix sort!
|
|
v = false;
|
|
d = malloc(sizeof(u32) * c->clausecnt);
|
|
|
|
memset(qb, 0, sizeof(u64) * RLVLS * RSIZE);
|
|
memset(qe, 0, sizeof(u64) * RLVLS * RSIZE);
|
|
|
|
for (u64 pass = 0; pass < RLVLS; ++pass) {
|
|
u64 shift = pass * RBITS;
|
|
|
|
for (u64 i = 0; i < c->clausecnt; ++i) {
|
|
// Sort highest to lowest by lastvar again, but this time sorting the indices in swaparr
|
|
// instead of sorting literals
|
|
u32 val = UINT32_MAX - c->lastvars[swaparr[i]];
|
|
u64 ind = (val >> shift) & RMASK;
|
|
qe[pass * RSIZE + ind]++;
|
|
}
|
|
|
|
u64 uc = 0;
|
|
for (u64 i = 0; i < RSIZE; ++i) if (qe[pass * RSIZE + i]) uc++;
|
|
if (uc == 1) continue;
|
|
|
|
qb[pass * RSIZE] = 0;
|
|
for (u64 i = 1; i < RSIZE; ++i) {
|
|
qb[pass * RSIZE + i] = qb[pass * RSIZE + i - 1] + qe[pass * RSIZE + i - 1];
|
|
}
|
|
|
|
for (u64 i = 0; i < c->clausecnt; ++i) {
|
|
u32 val = UINT32_MAX - c->lastvars[swaparr[i]];
|
|
u64 ind = (val >> shift) & RMASK;
|
|
d[qb[pass * RSIZE + ind]] = swaparr[i];
|
|
qb[pass * RSIZE + ind]++;
|
|
__builtin_prefetch(d + qb[pass * RSIZE + ind] + 1);
|
|
}
|
|
|
|
u32* tptr = swaparr;
|
|
swaparr = d;
|
|
d = tptr;
|
|
v = !v;
|
|
}
|
|
|
|
if (v) {
|
|
u32* tptr = swaparr;
|
|
swaparr = d;
|
|
d = tptr;
|
|
memcpy(swaparr, d, c->clausecnt * sizeof(u32));
|
|
}
|
|
//free(d);
|
|
|
|
// Swaparr now has each clause index value at the correct index for where
|
|
// it appears in the CNF now that it has been sorted
|
|
// We'll now invert the permutation in swaparr
|
|
for (uint i = 0; i < c->clausecnt; ++i) {
|
|
d[swaparr[i]] = i;
|
|
}
|
|
|
|
// giving us a lookup table from oldindex to newindex
|
|
// Which we then correct in all the literals
|
|
for (uint i = 0; i < c->litcnt; ++i) {
|
|
c->clauses[i] = d[c->clauses[i]];
|
|
}
|
|
|
|
// and then finally reorder the lastvars
|
|
for (uint i = 0; i < c->clausecnt; ++i) {
|
|
swaparr[d[i]] = c->lastvars[i];
|
|
}
|
|
|
|
// Copy the lastvars back into the correct array, clean up, and we're done!
|
|
memcpy(c->lastvars, swaparr, sizeof(u32) * c->clausecnt);
|
|
free(swaparr);
|
|
free(d);
|
|
} |